skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jiucai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jara, C; Borras_Sol, J (Ed.)
    Deep Reinforcement Learning (DRL) has shown its capability to solve the high degrees of freedom in control and the complex interaction with the object in the multi-finger dexterous in-hand manipulation tasks. Current DRL approaches lack behavior constraints during the learning process, leading to aggressive and unstable policies that are insufficient for safety-critical in-hand manipulation tasks. The centralized learning strategy also limits the flexibility to fine-tune each robot finger's behavior. This work proposes the Finger-specific Multi-agent Shadow Critic Consensus (FMSC) method, which models the in-hand manipulation as a multi-agent collaboration task where each finger is an individual agent and trains the policies for the fingers to achieve a consensus across the critic networks through the Information Sharing (IS) across the neighboring agents and finger-specific stable manipulation objectives based on the state-action occupancy measure, a general utility of DRL that is approximated during the learning process. The methods are evaluated in two in-hand manipulation tasks on the Shadow Hand. The results show that FMSC+IS converges faster in training, achieving a comparable success rate and much better manipulation stability than conventional DRL methods. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract Autonomous aerial manipulators have great potentials to assist humans or even fully automate manual labor-intensive tasks such as aerial cleaning, aerial transportation, infrastructure repair, and agricultural inspection and sampling. Reinforcement learning holds the promise of enabling persistent autonomy of aerial manipulators because it can adapt to different situations by automatically learning optimal policies from the interactions between the aerial manipulator and environments. However, the learning process itself could experience failures that can practically endanger the safety of aerial manipulators and hence hinder persistent autonomy. In order to solve this problem, we propose for the aerial manipulator a self-reflective learning strategy that can smartly and safely finding optimal policies for different new situations. This self-reflective manner consists of three steps: identifying the appearance of new situations, re-seeking the optimal policy with reinforcement learning, and evaluating the termination of self-reflection. Numerical simulations demonstrate, compared with conventional learning-based autonomy, our strategy can significantly reduce failures while still can finish the given task. 
    more » « less